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Below it  is shown how, in the simplest  case, i t i s  possible to Use the Leray m e t h o d [ l ]  to prove the solvabi l i ty  of 
the problem of cavitational flow of a perfect incompressible fluid past a symmetric smooth arc in accordance with the 
Joukowski-Rosdhko scheme [2] in an infinite and a confined flow. The problem Of uniqueness of the solution is not 
considered. 
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The complex potent ia l  w is expressed in terms of g thus: 

In the case of an infini te  flow 

1. The flow scheme will be clear  from the drawings (Figs. 
l ,  2; the lower half  Of the flow is shown, OA represents the ob-  
stacle,  AC the free jet).  We shall derive the integral  equations of 
the problems. As the auxi l iary  plane we shall take the plane 

= g q- ' , in which the lower half  of the  flow corresponds to the 
quarter of the unit c i rc le  lying in the first quadrant; in this case 
the arc OA corresponds to the arc { = e ~s (0 ~ s ~ 1/2~x ) and the 
free l ine to the segment ~ =  ~ (0 % g ~ 1). 

�9 (t + {.)2 
w-----a 4{ ~ ~- bS (1 - -  ~2)~ ' (1) 

Here a �9 0 and b(0  < b < 1) are unknown parameters  Co = 2B/(1 + Bz)), where il3 is the image  in the plane g of 

the inf in i te ly  remote point B. 

In the case of a confined (strip) flow 

HV~ In (i - -  d ~) (4~' -F b'  (l - -  ;2)2) (b 2~ d 2~ (2) W 
----- ~ ( t  - -  b "~) (4~ ~ -[- d ~ ( t  - -  ~2)z) - -  I -{- [ ~ '  = 1 " ~  821" 

Here H is the hal f -width  of  the strip, Vm is the free stream veloci ty ,  b and d(0 < d < b < 1) are unknown 
parameters ,  i13 and i6 are the images in the plane ~ of  the inf ini te ly  remote points B and D, 

By l we denote the arc abscissa of points on the obstacle  OA (at the point O we have l = 0, at the point of separa-  

t ion of the je t  l = - /0 ) ;  the angle  between the tangent  to the obstacle  and the x axis is denoted by ~.  The function 

�9 {/} ( l  o <i < 0) is known, 

If we consider known the relation I = I (s) (0 < s < x/s~z) associated with the conformal mapping of the quarter- 

circle onto the lower half of the flow, then for the function 

o)(~)=ilndw/dz, Re co (0) = (0), (3) 

we obtain by a wel l -known method (see; for example ,  [2]) the representation (V0 is the ve loc i ty  at the free l ine) 

�9 i + i ~  
(DZ= i In v, + ~,n ~ + a (D (~ (~) = 0 + iT). (4) 

The function f~ (g) is continuous in the closed quar te r -c i rc le  and satisfies the boundary conditions 

T([) =0 (0<~<i) 
(5) 

e(in)=0 (0<,i<I), e (eu) = W (l (s)} -- */2= (O < s < I/~=) . 

Hence 

Q (D --- 4~ (i - ~ )  W G (,)} V,n]  cos s ds (6) 

0 

Knowing w (g), with�9 the aid of (3) and (I) or (2) it is easy to find dz/d~. The boundary values of the modulus of 

this function for ~ = r (0 < # < */t~i are dZ/ds. 
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Thus, we obtain an equation for the funct ion/(s)  

dl 
= ]e - 'r  s in , s  (0 ~ s  ~ I / lg ) ,  l (a/ ,~) ---- 0 . 

Here T is the value of the imaginary part of function (6) for g e ts (0 ~ s ~ V2g) : 

(7) 

m =- -~ -  

0 

~i'l s i n s c o s o  
[~t' {l (o)} --"-~']~eos~ o i eos2s d~. (8) 

In the case of an infinite flow 

In the case of strip flow 

2 a ( t - - b  I) t + s i n s  
j =  l (s; a, b) --- Vo ( t - - b i s i n  2s)  z " (O) 

2HVco t -q- s in  s 
j ~ -  ] (s, b, d) ~ - ~ - ~  (b 2 -- .d~) ( i  - -  b ~ s in  S s ) ( t  - -  di 's in z s) " 

In order to determine the unknown parameters (a, b or b, d) we make use of two additional conditions: 

(lO) 

The free stream velocity 

( i~ )  ~--- i InVoo ( 1 1 )  

is known. 

The length of the arc 

l (0) = - -  lo (12) 

is given. 

2. We shall assume that the arc is such that 

(a) �9 {0} = V2 z,  I w 8}  - -  V2 n I < lh pn (p < t) ,  

(b) The function r {l} satisfies a Holder condition. 

By some means we extend r {/} to the entire axis.o~ < l < .-b ~ ,  so that conditions (a) and (b) are satisfied. 

In reference [3] the following existence theorem for solutions of equations of type (7) was proven. 

Theorem 1. In Eq. (7) let the function T be given by Eq. (8), let the function T {l} (--  co < l < -l- ~ )  
satisfy conditions (a) and (b), and tet the function / = ] (s;)., li) (0 < s < a/zn, X�94 < ~ < ~ ,  til < II < t12) 
be continuous. The parameters 1 X,/x are found together with l (x), for which two additional conditions re- 
lating T {l (s)}, X and/x are specified. Let these conditions be such that for an arbitrary function l (s) 
satisfying a HOlder condition they define X and/x on the segments [Xx, X,], [li,, l~! uniquely, the values 
of the parameters thus found depending continuously on l (s): for small variations in max ] Z (s) 1 and the 
HOlder constant of l (s) the values of the parameters change only slightly. Then Eq. (7) has a solution. 

The proof of  this theorem, which essentially reproduces the reasoning of Leray [1], consists briefly in the follow- 
ing, The equation is examined in the space E v of  functions vanishing at s = 1r/2 and satisfying the H01der condition 2 

1 : (S , )"  : (s,) I 
sup jeoss~- -  eos,,I ~ = Cz < O.-~tli, lll..<V, 

with the norm It l (s) II = max I l (,) I + ' e l  introduced in the usual way. The exponent v is chosen so that the condition 

O < v < l - - p  (la) 

is satisfied. 

1 There may, of course, be any number of them. The number of additional conditions coincides with the number 

of parameters. 
2 Equations of type (7) have been studied in other spaces also [4, 5], but for our purposes it is most convenient to 

take the space E v considered by Leray. 
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Equation (7) is treated as the problem of the fixed point of an operator A that acts in accordance with the formula 

z/zr~ 

L (s) = A l  (s) = - -  ~. ] (s," ~,, I~) e - T  sin s d s ,  (14) 
8 

Where T is calculated from (8), a n d  k and p are found f rom/(s)  using the additional conditions. 

We also introduce the operator X [l (s); t], obtained from A by replacing the function ,I, {/} everywhere with the 
function 

At t = 1 this operator goes over into A. 
function. 

t ~  {I} + ~/~ (i - - t )  n .  (15) 

and at t = 0 into an operator that car ties the entire space E u into a single 

By virtue of the Leray-Schauder fixed point principle [6], equation (7) has a solution if the operator X is com- 
pletely continuous on E u in the interval 0 ~ t % t,  and solutions of the equation I (s) --  X {l (s); t} are totally bounded 
with respect to the norm of E v.  

The complete continuity of X is easily verified. The boundedness of the set of solutions is proved as follows. 

Obviously, by virtue of the normalizat ion l (a/~n) = 0 ,  it is sufficient to prove the inequali ty 

II(sl)--l(s~) I ~ Cl eossx--  cos s~l v (0 ~ sa, s s ~ / 2 n ) ,  

where C is the same for all solutions. According to the H(51der inequali ty 

i'l dl 1/(t-V)ds 1-v 
lZ(sx) - ~ s  I cos  s l  - -  e, os  s~ 1" 

ii/ I 
81  

Using (7), we find that it is sufficient to show the boundedness of the integrals 

I/, n 

l - r  exp ~ ds,  
o 

where T is calculated from (8), in which r {l} is replaced with function (15). 

By the principle of symmetry the function ~2 (g) can be extended to the entire unit circle.  

law of the mean 

(16) 

In accordance with the 

Hence. by virtue of (5), 

Sn - - T  O 
f e x p T - ~ - ~ - c o a ~ ' ~ - ' ~ d s - - 2 n  . 
0 

f - -  T �9 {l (s)} - -  l h  ~ ds exp ~ cos i - -  
0 

Taking into account condition (a), imposed on ,P {Z}, and the choice of the number v (13), we obtain 

- - - -  ~ < t - ~  ~ < ~ - "  

Hence it is easy to obtain an estimate for the integral (16) depending only on p and v. It remains only to point 

out that if r {/} satisfies the condition (a), then this condition is also satisfied by the function (15) for any t. 

3. Theorem 1 makes it  possible to obtain the existence theorem quite simply for different problems of the theory 

of jets and for more general problems where the velocity at unknown parts of the boundary of the flow region is 

variable [3]. 

We shall test the fulf i l lment  of the conditions of the theorem for the case of an infinite flow between parallel  

walls. 

In this case the additional conditions (11) and (12) can be written in the following form: 
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Condit ion ( I l L  with account  for (4) and (6), becomes 

1l, n b cos s Vo 
Z 2  i in - -  ~F {l (s)}] - i  - - b  2 sin 2 s ds = In~--s (17) 

0 

Condit ion (12), by virtue of  (7) and (9), becomes 

l]~rc 
2 a ( i - - b  ~) .~ ( i + s i n s )  sin 
. . . .  V 0  - -  j ( t  ~ b % s i n  2 s ) z  �9 e - T  ds-= lo . ( 1 8 )  

0 

For an arbitrary func t ion / ( s )  ~atisfying a H~lder condit ion these two equations uniquely define the values of the 
parameters  a and b. Indeed, from condition (a) imposed on the function ~ {l}, it  is easy to establish that with variat ion 
of b from 0 to 1 the lef t  side of (17) increases monotonica l ly  from zero to inf ini ty .  Therefore, for any fixed V 0, Vo. 
(V0 ~- V~) and l(s), Eq. (17) has an equation in b as a unique solution. After  b has been found, a is found from (18). 

tt is easy to verify the continuous dependence of a and h o n / ( s ) .  

We shall  now show that  there are es t imates  b -~ b0 < 1, a -- a0 for the values of a and b found from (17) and (18) 
that  do not depend on l(s). From condit ion (a) i t  follows that the lef t  side of (17) for any b is not less t h a n l / 2 ( 1  - 
- p) In (1 + b)/(1 - b), so that as b0 we can take the root of the equation 

I ~ p In  t + b o Vo 
2 ' t - - b o  In Vr " 

The second es t imate  m a y  be obtained as follows. It is e a s y t o  verify that 

V,~ nan 
i T si,~sds == S [ *  {1 (`)' "" --2"] Cos sd,, 
0 �9 0 

so that 

t /2n  

0 

We have the inequal i ty  (a consequence of the fact  that  the graph of the function y = e x is turned convex side down) 

0 

From (18) we now get the required es t imate ;  in this case 

loVo exp (li2pr~) 
a0 = 2 (1 - -  bo 2) ' 

It remains to point out that  when 0 ~ s ~ 1/2n, 0 ~ b ~ be, 0 C a  ~ ao the function (9) is continuous. The fol -  

lowing result is obta ined.  

Theorem 2. The problem of Joukowskii-Roshko flow past a symmet r i ca l  obstacle  satisfying conditions 

(a)l(b)l is solvable  for any posi t ive cavi ta t ion  number.  

In the case of strip flow the addi t ional  conditions (11) and (12), after expansion, have the form (17) and 

2HVoo '/~'~ (t' + sin s) sin s 
- -  e - T  d s  ~ lo  

(b~ - -  dZ) ~ (1 - -  b~ sin a Si' ( i  - -  d~ s i n  2 s)  
0 

If l(s) is given, then b is found uniquely from (17) (in this case b -~ b0, where b0 has the same value  as before),  

For d varying from 0 t o  b, the lef t  side of (19) decreases monotonica l ly  from a certain value (depending on l(s))  to zero.  

Therefore Eq. (19), considered as an equation for d. has not more than one solution. But this may  be unsolvable.  In 

this case we agree  to take d = 0. It is easy to verify that the paramete r  d thus defined depends continuously on l(s). For 

0 -~ s ~ 7r/2,  0 -< d ~ b --- b0 the function (10) is continuous, 

Note that when d = 0 Eq. ( 7 )  goes over into the equation for c lass ical  Kirchhoff flow. Therefore app l ica t ion  of 

Theorem 1 gives the following theorem.  
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Theorem 3. Comider  symmet r ica l  strip flow when the arc satisfies conditions (a), (b). Then for a n y  posi-  
t ive  cavi ta t ion  number a t  least  one of the following problems is solvable:  1) Joukowski-Roshko flow with 
separation at the ends of  the arc; 2) Kirchhoff flow with separation at the ends or a t  interior points of  the 

a r c .  

The question of satisfaction of the Brillouin conditions (e. g . ,  [2]) is not considered here.  

We assume t h a t  the obstacle has the following natural  property: for Kirchhoff flow with separation a t  interior points 
the larger cavi ta t ion number corresponds to la te r  separation. Then Theorem 3 assumes the following form: 

Theorem 3' .  Consider symmetr ica l  strip flow when t h e  arc satisfies conditions (a), (b). Let Q0 be the cav-  
i tat ion number corresponding to Kirchhoff flow (with separation at the ends of the arc). Then for this arc 
the problem of  Joukowski-Roshko flow (with separation at  the ends of  the  arc) has a solution for any cav-  

i ta t ion number greater  than Q0. 

Note that exac t ly  the same result holds for Ryabnshinskii flow [3]. 

I t  is easy to extend the theorems obtained to the case of flow past a symmet r ica l  wedge with curved cheeks (see 

[7]). 
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