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‘Below-it is shown how, in the simplest case, it is possible to use the Leray method [1] to prove the solvability of
the problem of cavitational flow of a perfect incompressible fluid past a symmetric smooth arc in accordance with the

Joukowski -Rosdhko scheme [27]in an infinite and a confined flow. The problem of uniqueness of the solution is not
considered.

Y 4 1. The flow scheme will be clear from the drawings (Figs.
7 b4 1, 2; the lower half of the flow is shown, OA represents the ob-
‘Z/ Y 1 ﬁ’,” . g ' stacle, AC the free jet). We shall derive the integral equations of
v NE. w T U T A Z  the problems. As the auxiliary plgne we shall take the plane
A 4 D t=E+4 ", in which the lower half of the flow corresponds to the
A 5/ /6i g | quarter of the unit circle lying in the first quadrant; in this case
4 7 ”the arc OA corresponds to the arc § = €' (0 <C's << Y/,m) and the
Fig. 1 Fig. 2 free line to the segment { = E (0 < E<T1).

The complex potential w is expressed in terms of ¢ thus:

In the case of an infinite flow

. 1 2)2
o= T - M

Here ¢ > 0 and b(0 < b < 1) are unknown parameters (b = 28/(1 + 8%), where i is the image in the plane { of
the infinitely remote point B.

In the case of a confined (strip) flow

HVoo . (1 — d?) (4224 b2 (1 —[2)2) 28 28
Y=ETR = @ EE— o) b=r5m i=r7m)

(2)

Here H is the half-width of the strip, V« is the free stream velocity, b and d(0 < d < b < 1) are unknown
parameters, iB and i§ are the images in the plane £ of the infinitely remote points B and D.

By I we denote the arc abscissa of points on the obstacle OA (at the point O we have I = 0, at the point of separa-
tion of the jet I = —I;); the angle between the tangent to the obstacle and the x axis is denoted by ¥. The function
¥ {1} (I, < 1 < 0) is known,

If we consider known the relation I = I (s) (0 < s < ¥/,yn) associated with the conformal mapping of the quarter-
circle onto the lower half of the flow, then for the function

0 @Q)=ilndw/dz Re o (0) = (0), (3)
we obtain by a well-known method (see; for example, [2]) the representation (Vg is the velocity at the free line)

14 '
o@=ilVitim{tE+QQ  @Q=0+iD). @

The function Q (¢) is continuous in the closed quarter-circle and satisfies the boundary conditions

TE=0 O<ESY

o 2
B(m =0 O<A<t), OE)=PUE—Yr O<s<Ym). (
Hence
40— € Y0 =Y
1 -— — Cos s
2@ =—73 S T+ B — 4l costs © ©

Knowing w (¢), with the aid of (3) and (1) or (2) it is easy to find dz/d¢. The boundary values of the modulus of
this function for § = ¢! (0 < 's << Yym) are di/ds.
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Thus, we obtain an equation for the function I(s)

dl
r=fTsins O << Ypm), 1¢/m) = 0. ™

Here T is the value of the imaginary part of function (6) for § = ¢ (0 7< s < Ypn):

Yy

2 ‘ 14 sin s cos @
T=TS [‘F{l(o)}"T]cos”aé-cos’sdq- ®
o - .
In the case of an infinite flow
_ . 21 —8 1 J~sins
f=1Fl(siab)= Va (1 —basin? 57 * 9)

In the case of strip flow

2HV o 41-4-sins
=10 b, d) =7~ O —9) T Fasinis) (1 — & smis) - (10)

In order to determine the unknown parameters (a, b or b, d) we méke use of two additional conditions:
The free stream velocity
o@@B)=ilnV_ (11}
is known.

The length of the arc
1(0)=—1b . (12}
is given.

2., We shall assume that the arc is such that

(8) Y{0}=Yam, |¥{H—1en|<Yapn (<Y,
(b) The function ¥ {I} satisfies a Hslder condition.
By some means we extend ¥ {t} to the entire akis_w < 1< + oo, so that conditions (a) and (b) are satisfied.

In reference [3] the following existence theorem for solutions of equations of type (7) was proven.

Theorem 1. In Eq. (7) let the function T be given by Eq. (8), let the function ¥ {1} (— o0 < 1 < 4 o0)
satisfy conditions (a) and (), and let the function /= f (54O < s < Yort, A A Ay Py S S Hy)
be continuous. The pammeters1 X, i are found together with I (x), for which two additional conditions re-~
lating ¥ {1 ()}, A and p are specified. Let these conditions be such that for an arbitrary function I(s)
satisfying a Holder condition they define A and p on the segments [Ay, Agl, [ity, psl uniquely, the values
of the parameters thus found depending continuously on I(s): for small variations in max |1(s) | and the
Holder constant of I(s) the values of the parameters change only slightly. Then Eq. (7) has a solution.

The proof of this theorem, which essentially reproduces the reasoning of Leray [1], consists briefly in the follow -
ing, The equation is examined in the space E, of functions vanishing at s = 1/2 and satisfying the Holder condition?

[L(s)—L(s9) |

§ 7 =C1 < o0
081, 85y | COS 51 — COS 83
with the norm || I (s) || = max | I (s) | + C, introduced in the usual way. The exponent v is chosen so that the condition
0LvLl—p (13)

is satisfied.

T There may, of course, be any number of them. The number of additional conditions coincides with the number

of parameters.
2 Equations of type (7) have been studied in other spaces also [4, 5], but for our purposes it is most convenient to

take the space E, considered by Leray.
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Equation (7) is treated as the problem of the fixed point of an operator ‘A that acts in accordance with the formula

e
L(s)=Al(s)=— S F(s, A p) e Tsin sds, (14)

Where T is calculated from (8), ‘and A and p are found from I(s) using the additional conditions.

We also introduice the operator X-[1 (s), ¢], obtained from A by replacing the function ¥ {l} everywhere with the
function

{4+ (1 —2t) (15)

At t= 1 this operator goes over into A, and at t = 0 into an operator that carries the entire space Ey into a single
function. ‘

By virtue of the Leray-Schauder fixed point principle [6], equation (7) has a solution if the operator X is com-
pletely continuous on Ey, in the interval 0 <C ¢ < 4, and solutions of the equation I (s) = X { (s); ¢} are totally bounded
with respect to the norm of Ey.

The complete continuity of X is easily verified. The boundedness of the set of solutions is proved as foliows.
Obviously, by virtue of the normalization ! (*/,%) =0, it is sufficient to prove the inequality
[2(s1) — I (s2) | < Clcossy—cossaf’ O< s, sa<<Yam),
where C is the same for all solutions. According to the Helder inequality

Sg

|

81

1~y

1/(1-¥) v
| cos s1—cos sz " ,

dl

——— 8
d coss

1 () — 1 (||

Using (7), we find that it is sufficient to show the boundedness of the integrals

Yy

—T
\ exp— as. (16)
0

where T is calculated from (8), in which ¥ {I} is replaced with function (15).

By the principle of symmetry the function Q (£) can be extended to the entire unit circle. In accordance with the
law of the mean

an

—T 0
S exXp ;5 €08 Ty ds=2n .
0

Hence, by virtue of (5),

(=T  Y{a@E)—1hn
Sexp T—v cos { (18)_}_,‘; [a% ds=g.
o

Taking into account condition (a), imposed on ¥ {l}, and the choice of the number v (13), we obtain

l'{’—-"/an
1—w

p x_=
‘< T—v2<7%"

Hence it is easy to obtain an estimate for the integral (16) depending only on p and v. It remains only to point
out that if ¥ {I} satisfies the condition (a), then this condition is also satisfied by the function (15) for any t.

3. Theorem 1 makes it possible to obtain the existence theorem quite simply for‘ different problems of the theory
of jets and for more general problems where the velocity at unknown parts of the boundary of the flow region is

variable [3].
We shall test the fulfillment of the conditions of the theorem for the case of an infinite flow between parallel
walls.

In this case the additional conditions (11) and (12) can be written in the following form:
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Condition (11), with account for (4) and (6), becomes

o "
2 ¢ becoss 14
ry S [n—ﬁ"{l(s)}]mds=lni (1n

0

Condition (12), by virtue of (7) and (9), becomes
Ygmt
2a (4 — b?) & (1 +4-sin s) sin s

Vs s ¢ A=k, (18)

0

For an arbitrary function l(s) satisfying a Holder condition these two equations uniquely define the values of the
parameters a and b. Indeed, from condition (a) imposed on the function ¥ {1}, it is easy to establish that with variation
of b from 0 to 1 the left side of (17) increases monotonically from zero to infinity. Therefore, for any fixed Vj, Ve
(Vg = Vo) and I(s), Eq. (17) has an equation in b as a unique solution. After b has been found, a is found from (18).

It is easy to verify the continuous dependence of a and b on I(s).

we shall now show that there are estimates b = by < 1, a = gy for the values of a and b found from (17) and (18)
that do not depend on I(s). From condition (a) it follows that the left side of (17) for any b is not less than1/2(1 -
—p) In (1 + b)/(1 ~Db), so that as by we can take the root of the equation

1-'71-7 1+bo_ Vo
5 T, TRy

[o.0]

The second estimate may be obtained as follows. It is easy.to verify that

‘/3’1 1/?11
S T sin) sds = S [\y ()} — —g*] cos sds,
0 : b

so that

e,
l S T sin sds
0

11
<P

We have the inequality (a consequence of the fact that the graph of the function y = e* is turned convexside down)

CYm g
S &7 sin sds>exp(—— S 7 sin sds).
d .
From (18) we now get the required estimate; in this case
__ dVg exp (iypm)
=20 =59
It remains to point out that when 0 s <Yy, 0 b <‘bo. 0 < a < a, the function (9) is continuous. The fol-
lowing result is obtained.
Theorem 2. The problem of Joukowskii-Roshko flow past a symmetrical obstacle satisfying conditions
(a)y(b); is solvable for any positive cavitation number.

In the case of sirip flow the additional conditions (11) and (12), after expansion, have the form (17) and

n

HY ’ 1 -+ gin s) sin s
v, ¢ —d) S T= o 9 (1)_ Fswmis) ¢ de=lo.
o .

If 2(s) is given, then b is found uniquely from (17) (in this case b = by, where by has the same value as before).
For d varying from 0'to b, the left side of (19) decreases monotonically from a certain value (depending on I(s)) to zero.
Therefore Eq. (19), considered as an equation for d, has not more than one solution, But this may be unsolvable. In
this case we agree to take d = 0. It is easy to verify that the parameter d thus defined depends continuously on 1(s). For
0 =<s=sn/2, 0 =d =<b =bhy the funcrion (10) is continuous,

Note that when d = 0 Eq. (7) goes over into the equation for classical Kirchhoff flow. Therefore application of
Theorem 1 gives the following theorem.
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Theorem 3. Consider symmetrical strip flow when the arc satisfies conditions (a), (b). Then for any posi-
tive cavitation number at least one of the following problems is solvable: 1) Joukowski-Roshko flow with

separation at the ends of the arc; 2) Kirchhoff flow with separation at the ends or at interior points of the

arc., '

The question of satisfaction of the Brillouin conditions (e.g., [2]) is not considered here.

We assume-that the obstacle has the following natural property: for Kirchhoff flow with separation at interior points
the larger cavitation number corresponds to later separation. Then Theorem 8 assumes the following form:

Theorem 3'. Consider symmetrical strip flow when the arc satisfies conditions (a), (b). Let Qp be the cav-
itation number corresponding to Kirchhoff flow (with separation at the ends of the arc). Then for this arc
the problem of Joukowski-Roshko flow (with separation at the ends of the arc) has a solution for any cav-
itation number greater than Q. ‘

Note that exactly the same result holds for Ryabushinskii flow [3].

It is easy to extend the theorems obtained to the case of flow past a symmetrical wedge with curved cheeks (see

NNDE
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